Hippocampal transcriptome reveals novel targets of FASD pathogenesis

Brain Behav. 2019 Jul;9(7):e01334. doi: 10.1002/brb3.1334. Epub 2019 May 29.

Abstract

Introduction: Prenatal alcohol exposure can contribute to fetal alcohol spectrum disorders (FASD), characterized by a myriad of developmental impairments affecting behavior and cognition. Studies show that many of these functional impairments are associated with the hippocampus, a structure exhibiting exquisite vulnerability to developmental alcohol exposure and critically implicated in learning and memory; however, mechanisms underlying alcohol-induced hippocampal deficits remain poorly understood. By utilizing a high-throughput RNA-sequencing (RNA-seq) approach to address the neurobiological and molecular basis of prenatal alcohol-induced hippocampal functional deficits, we hypothesized that chronic binge prenatal alcohol exposure alters gene expression and global molecular pathways in the fetal hippocampus.

Methods: Timed-pregnant Sprague-Dawley rats were randomly assigned to a pair-fed control (PF) or binge alcohol (ALC) treatment group on gestational day (GD) 4. ALC dams acclimatized from GDs 5-10 with a daily treatment of 4.5 g/kg alcohol and subsequently received 6 g/kg on GDs 11-20. PF dams received a once daily maltose dextrin gavage on GDs 5-20, isocalorically matching ALC counterparts. On GD 21, bilateral hippocampi were dissected, flash frozen, and stored at -80° C. Total RNA was then isolated from homogenized tissues. Samples were normalized to ~4nM and pooled equally. Sequencing was performed by Illumina NextSeq 500 on a 75 cycle, single-end sequencing run.

Results: RNA-seq identified 13,388 genes, of these, 76 genes showed a significant difference (p < 0.05, log2 fold change ≥2) in expression between the PF and ALC groups. Forty-nine genes showed sex-dependent dysregulation; IPA analysis showed among female offspring, dysregulated pathways included proline and citrulline biosynthesis, whereas in males, xenobiotic metabolism signaling and alaninine biosynthesis etc. were altered.

Conclusion: We conclude that chronic binge alcohol exposure during pregnancy dysregulates fetal hippocampal gene expression in a sex-specific manner. Identification of subtle, transcriptome-level dysregulation in hippocampal molecular pathways offers potential mechanistic insights underlying FASD pathogenesis.

Keywords: brain; hippocampus; nitric oxide; pregnancy; teratology.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Disease Models, Animal
  • Ethanol / administration & dosage
  • Female
  • Fetal Alcohol Spectrum Disorders / pathology*
  • High-Throughput Nucleotide Sequencing / methods
  • Hippocampus / pathology*
  • Male
  • Pregnancy
  • Prenatal Exposure Delayed Effects / chemically induced
  • Rats
  • Rats, Sprague-Dawley
  • Transcriptome / drug effects*

Substances

  • Ethanol