Genetic dissection of stalk lodging-related traits using an IBM Syn10 DH population in maize across three environments (Zea mays L.)

Mol Genet Genomics. 2019 Oct;294(5):1277-1288. doi: 10.1007/s00438-019-01576-6. Epub 2019 May 28.

Abstract

Stalk lodging severely limits the grain yield of maize (Zea mays L.). Mechanical stalk strength can be reflected by the traits of stalk diameter (SD), stalk bending strength (SBS), and lodging rind penetrometer resistance (RPR). To determine the genetic basis of maize stalk lodging, quantitative trait loci (QTLs) were mapped for these three traits using the IBM Syn10 DH population in three environments. The results indicated that there were strong genetic correlations among the three traits, and the analyses of phenotypic variations for SD, SBS, and RPR across the three environments showed high broad-sense heritability (0.6843, 0.5175, and 0.7379, respectively). In total, 44 significant QTLs were identified control the above traits across the 3 environments. A total of 14, 14, and 16 QTLs were identified for SD, SBS, and RPR across single-environment mapping, respectively. Notably, ten QTLs were stably expressed across multiple-environments, including two QTLs for SD, three for SBS, and five for RPR. Three major QTLs each accounting for over 10% of the phenotypic variation were qSD6-2 (10.03%), qSD8-2 (13.73%), and qSBS1-2 (11.89%). Comprehensive analysis of all QTLs in this study revealed that 5 QTL clusters including 12 QTLs were located on chromosomes 1, 3, 7, and 8, respectively. Among these 44 QTLs, 9 harbored 13 stalk lodging-associated SNPs that were detected by our recently published work, with 1 SNP successfully validated in the IBM Syn10 DH population. These chromosomal regions will be useful for marker-assisted selection and fine mapping of stalk lodging-related traits in maize.

Keywords: Candidate gene; Maize; QTLs; Stalk lodging resistance.

MeSH terms

  • Chromosome Mapping / methods
  • Crosses, Genetic
  • Edible Grain / genetics
  • Genes, Plant / genetics*
  • Genetic Linkage / genetics
  • Phenotype
  • Polymorphism, Single Nucleotide / genetics
  • Quantitative Trait Loci / genetics
  • Zea mays / genetics*