Correlative study of lattice imperfections in long-range ordered, nano-scale domains in a Fe-Co-Mo alloy

Ultramicroscopy. 2019 Sep:204:91-100. doi: 10.1016/j.ultramic.2019.05.005. Epub 2019 May 17.

Abstract

Recent advancements in data mining methods in atom probe microscopy have enabled new quantitative chemical and microstructural characterization beyond the standard three-dimensional reconstruction. For example, spatial distribution maps have been developed to enable visualisation of the local lattice occupation of a selected region of interest. However, the precision of such studies yet remains unknown as correlation with complementary methods would be required. Therefore, a correlative study of atom probe microscopy, neutron diffraction and microstructural modelling of long-range ordered, nano-scale domains in a well-researched Fe-Co-Mo Maraging-type steel is presented here. Its microstructure consists of Mo-enriched µ-phase (Fe,Co)7Mo6 particles embedded into a body-centred cubic FeCo matrix. Previous research has shown that under slow cooling conditions, this matrix partially decomposes into nano-scale B2 long-range ordered domains surrounded by disordered regions, resulting in reduced toughness in potential cutting applications. Usually, a long-range order parameter S referring to ideal B2 long-range order is assumed within such domains according to neutron diffraction. However, atom probe microscopy and modelling results presented in the current study indicate lattice imperfections with a partial substitution of atoms on the Fe- and Co-sublattices. After considering preferential retention effects during the atom probe experiment, a model unit cell is presented to define the observed imperfect B2 long-range order as pseudo-D03 long-range order, and the potential impact on the materials properties is discussed.

Keywords: Atom probe microscopy; Long-range order; Modelling; Neutron diffraction.