Interleukin-33 Involvement in Nonsmall Cell Lung Carcinomas: An Update

Biomolecules. 2019 May 25;9(5):203. doi: 10.3390/biom9050203.

Abstract

Lung carcinogenesis is a multistep process involving genetic mutations and epigenetic changes, with the acquisition of a malignant phenotype characterized by apoptosis resistance, unregulated proliferation and differentiation, invasion, and metastatic abilities. However, neoplastic development and progression seem to be aided by non-neoplastic cells; the molecules they produced can either promote the immune response or, alternatively, support tumor pathogenesis. Consequently, the relative contribution of tumor-associated inflammatory pathways to cancer development has become crucial information. Interleukin-33 (IL-33) is an IL-1-like alarmin, and it is a ligand for the suppressor of tumorigenicity 2 (ST2) receptor. IL-33 functions as a dual role cytokine with the ability to induce T-helper-type 2 (Th2) immune cells and translocate into the nucleus, suppressing gene transcription. Although its function in immunity- and immune-related disorders is well known, its role in tumorigenesis is still debated. The IL-33/ST2 axis is emerging as a powerful modulator of the tumor microenvironment (TME) by recruiting immune cells, able to modify the TME, supporting malignant proliferation or improving antitumor immunity. In the present review, we discuss IL-33's potential role in lung carcinogenesis and its possible application as a therapeutic target.

Keywords: IL-33; cancer; immune system; immunotherapy; lung.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Carcinogenesis / genetics
  • Carcinogenesis / metabolism
  • Carcinoma, Non-Small-Cell Lung / metabolism*
  • Carcinoma, Non-Small-Cell Lung / pathology
  • Humans
  • Interleukin-33 / genetics
  • Interleukin-33 / metabolism*
  • Lung Neoplasms / metabolism*
  • Lung Neoplasms / pathology
  • Receptors, Interleukin / metabolism

Substances

  • Interleukin-33
  • Receptors, Interleukin