MiR-135a-5p Is Critical for Exercise-Induced Adult Neurogenesis

Stem Cell Reports. 2019 Jun 11;12(6):1298-1312. doi: 10.1016/j.stemcr.2019.04.020. Epub 2019 May 23.

Abstract

Physical exercise stimulates adult hippocampal neurogenesis and is considered a relevant strategy for preventing age-related cognitive decline in humans. The underlying mechanisms remains controversial. Here, we show that exercise increases proliferation of neural precursor cells (NPCs) of the mouse dentate gyrus (DG) via downregulation of microRNA 135a-5p (miR-135a). MiR-135a inhibition stimulates NPC proliferation leading to increased neurogenesis, but not astrogliogenesis, in DG of resting mice, and intriguingly it re-activates NPC proliferation in aged mice. We identify 17 proteins (11 putative targets) modulated by miR-135 in NPCs. Of note, inositol 1,4,5-trisphosphate (IP3) receptor 1 and inositol polyphosphate-4-phosphatase type I are among the modulated proteins, suggesting that IP3 signaling may act downstream miR-135. miR-135 is the first noncoding RNA essential modulator of the brain's response to physical exercise. Prospectively, the miR-135-IP3 axis might represent a novel target of therapeutic intervention to prevent pathological brain aging.

Keywords: INPP4A; ITPR1; adult neurogenesis; aging; inositol 1,4,5-trisphosphate (IP3) pathway; miR-135a; running.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult Stem Cells / metabolism*
  • Aging / metabolism*
  • Animals
  • Cell Proliferation
  • Gene Expression Regulation
  • Humans
  • Intercellular Signaling Peptides and Proteins / biosynthesis
  • Intracellular Signaling Peptides and Proteins / biosynthesis
  • Lateral Ventricles / cytology
  • Lateral Ventricles / metabolism
  • Mice
  • Mice, Knockout
  • MicroRNAs / biosynthesis*
  • Neural Stem Cells / metabolism*
  • Neurogenesis*
  • Physical Conditioning, Animal*
  • Stem Cell Niche
  • p38 Mitogen-Activated Protein Kinases / biosynthesis

Substances

  • Dkk1 protein, mouse
  • Intercellular Signaling Peptides and Proteins
  • Intracellular Signaling Peptides and Proteins
  • MicroRNAs
  • Mirn135 microRNA, mouse
  • WD repeat containing planar cell polarity effector
  • p38 Mitogen-Activated Protein Kinases