Return flow ion concentration polarization desalination: A new way to enhance electromembrane desalination

Water Res. 2019 Aug 1:159:501-510. doi: 10.1016/j.watres.2019.05.042. Epub 2019 May 13.

Abstract

In electromembrane desalination processes such as electrodialysis (ED) and ion concentration polarization (ICP) desalination, ion-depleted boundary layers constitute the desalted, product stream, yet also cause high resistivity and voltage drop. Directly manipulating fluid flow streams is a new method to break this fundamental trade-off for electromembrane desalination. In this work, we are introducing a novel electromembrane desalination architecture that allows a feed stream to return to the feed inlet side of the membrane (hereby named as return-flow (RF) architecture) to improve the energy efficiency by re-distributing and controlling the depleted boundary layer, even at high current values. The technical feasibility of this idea was examined in ICP desalination process (RF-ICP) with a wide range of feed salinity from 10 to 70 g/L. For a partial desalination, RF-ICP (∼75 cm2 of membrane area) has achieved similar power consumption compared to batch-ED with 3 times bigger membrane area (200 cm2) with a higher area efficiency for salt removal, which translates into lower optimal desalination cost. The techno-economic analysis of RF-ICP have been performed for the treatment of 70 g/L brine waste. For partial desalination of 70 g/L brine down to 35 g/L, RF-ICP desalination achieved overall water cost as low as $2.57/m3 ($0.41/barrel). This could translate into reduction in total water cost up to 31% for zero brine release scenarios, depending on the concentrated brine treatment cost. These results show that return-flow architecture can improve the performance of electromembrane desalination, enabling more flexible water treatment for many real-world applications.

Keywords: Desalination; Electrodialysis; Ion concentration polarization; Return-flow; Unipolar.

MeSH terms

  • Salinity
  • Sodium Chloride
  • Wastewater
  • Water
  • Water Purification*

Substances

  • Waste Water
  • Water
  • Sodium Chloride