Triacetone triperoxide characterization by FT-ICR mass spectrometry: Uncovering multiple forensic evidence

Forensic Sci Int. 2019 Aug:301:37-45. doi: 10.1016/j.forsciint.2019.04.020. Epub 2019 Apr 26.

Abstract

Triacetone triperoxide is one of the most common used explosives by terrorist and criminal groups, being easily synthesized with over the counter reagents. Moreover, it's difficult to detect since it contains no nitrogen. Extreme resolution mass spectrometry, based on Fourier transform ion cyclotron resonance mass spectrometry provides a way to established its composition, being able to detect its presence in complex matrixes. In this work, we investigated the detailed chemical composition of triacetone triperoxide and analysed latent fingerprints for evidence of its handling. Our results allowed the characterization of the oligoperoxides formed in the synthesis of triacetone triperoxide: oligomers dihydroperoxy terminated [H(OOC(CH3)2)nOOH] and the oligomeric acetone carbonyl oxides terminated as hydroperoxides [H(O2C(CH3)2)nOOC(O)CH3]. The discrimination between the different synthetic routes using different acid catalysts is possible given the clear differences between the mass spectrum corresponding to each case. Moreover, we identified triacetone triperoxide in latent fingerprints following its manipulation. For criminal investigation, in addition to the unambiguous detection and identification of the explosive, it is of the highest interest to identify the reagents used, who produced it and who used it for criminal purposes.

Keywords: Explosives; FT-ICR-MS; Fingerprints; TATP.