Environmentally Accurate Microplastic Levels and Their Absence from Exposure Studies

Integr Comp Biol. 2019 Dec 1;59(6):1485-1496. doi: 10.1093/icb/icz068.

Abstract

Microplastics (synthetic polymers; <5 mm) are ubiquitous, in the environment and in the news. The associated effects of microplastics on flora and fauna are currently only established through laboratory-based exposure trials; however, such studies have come under scrutiny for employing excessive concentrations with little environmental relevance. This critical review is intended to summarize key issues and approaches for those who are considering the need for local microplastics research, both in terms of environmental pollution and the impacts on aquatic species. A meta-analysis of results from published experimental (n = 128) and environmental (n = 180) studies allowed us to compare the reported impacts from experiments that expose organisms to microplastics, and the concentrations of environmental microplastics found in the wild. The results of this meta-analysis highlight three issues that should be modified in future work (1) use of extreme dosages, (2) incompatible and incomparable units, and (3) the problem of establishing truly informative experimental controls. We found that 5% of exposure trials examined did not use any control treatment, and 82% use dramatically elevated dosages without reference to environmental concentrations. Early studies in this field may have been motivated to produce unequivocal impacts on organisms, rather than creating a robust, environmentally relevant framework. Some of the reported impacts suggest worrying possibilities, which can now inspire more granular experiments. The existing literature on the extent of plastic pollution also has limited utility for accurately synthesizing broader trends, as has been raised in previous reviews; environmental extraction studies use many different units, among which only 76% (139/180) could be plausibly converted for comparison. Future research should adopt the units of microparticles/kg (of sediment) or mp/L (of fluid) to improve comparability. Now that the global presence of microplastic pollution is well established, with more than a decade of research, new studies should focus on comparative aspects rather than the presence of microplastics. Robustly designed, controlled, hypothesis-driven experiments based on environmentally relevant concentrations are needed now to understand our future in the new plastic world.

Publication types

  • Meta-Analysis
  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Dose-Response Relationship, Drug
  • Environmental Monitoring / methods*
  • Environmental Pollutants / analysis*
  • Microplastics / analysis*
  • Research Design / standards*
  • Toxicity Tests / methods*
  • Toxicity Tests / standards

Substances

  • Environmental Pollutants
  • Microplastics