Enhancement of Photocatalytic Activity under Visible Light Irradiation via the AgI@TCNQ Core-Shell Structure

Materials (Basel). 2019 May 23;12(10):1679. doi: 10.3390/ma12101679.

Abstract

In this paper, a AgI@TCNQ photocatalyst with a core-shell structure was reported. A two-dimensional TCNQ (7,7,8,8-Tetracyanoquinodimethane) nanosheet, with a π-π conjugate structure, was used as a shell layer to realize the flexible coating on the surface of AgI nanoparticles. These special core-shell structure composites solve the key problems of the small interface of the bulk composites and the lesser charge transfer paths, which could accelerate the migration of photogenerated carriers. Thus, the AgI@TCNQ photocatalysts showed the better photodegradation performance for the methylene blue (MB) solution, and the degradation rate of AgI@TCNQ (1 wt.%) composite was 1.8 times than AgI under irradiation. The reactive species trapping experiments demonstrated that ·O2-, h+, and ·OH all participated in the MB degradation process. The photocatalytic mechanism of AgI@TCNQ composites could be rationally explained by considering the Z-scheme structure, resulting in a higher redox potential and more efficient separation of charge carriers. At the same time, the unique core-shell structure provides a larger contact area, expands the charge transport channel, and increases the surface active sites, which are beneficial for improving photocatalytic performance.

Keywords: TCNQ; core-shell structure; photocatalytic activity.