Stepwise Reduction at Magnesium and Beryllium: Cooperative Effects of Carbenes with Redox Non-Innocent α-Diimines

Inorg Chem. 2019 Aug 19;58(16):10554-10568. doi: 10.1021/acs.inorgchem.9b01058. Epub 2019 May 24.

Abstract

In the past two decades, the organometallic chemistry of the alkaline earth elements has experienced a renaissance due in part to developments in ligand stabilization strategies. In order to expand the scope of redox chemistry known for magnesium and beryllium, we have synthesized a set of reduced magnesium and beryllium complexes and compared their resulting structural and electronic properties. The carbene-coordinated alkaline earth-halides, (Et2CAAC)MgBr2 (1), (SIPr)MgBr2 (2), (Et2CAAC)BeCl2 (3), and (SIPr)BeCl2 (4) [Et2CAAC = diethyl cyclic(alkyl)(amino) carbene; SIPr = 1,3-bis(2,6-diisopropylphenyl)-4,5-dihydroimidazole-2-ylidene] were combined with an α-diimine [2,2-bipyridine (bpy) or bis(2,6-diisopropylphenyl)-1,4-diazabutadiene (DippDAB)] and the appropriate stoichiometric amount of potassium graphite to form singly- and doubly-reduced compounds (Et2CAAC)MgBr(DippDAB) (5), (Et2CAAC)MgBr(bpy) (6), (Et2CAAC)Mg(DippDAB) (7), (Et2CAAC)Be(bpy) (8), and (SIPr)Be(bpy) (9). The doubly-reduced compounds 7-9 exhibit substantial π-bonding interactions across the diimine core, metal center, and π-acidic carbene. Each complex was fully characterized by UV-vis, FT-IR, X-ray crystallography, 1H, 13C, and 9Be NMR, or EPR where applicable. We use these compounds to highlight the differences in the organometallic chemistry of the lightest alkaline earth metals, magnesium and beryllium, in an otherwise identical chemical environment.