The influence of female mice age on biodistribution and biocompatibility of citrate-coated magnetic nanoparticles

Int J Nanomedicine. 2019 May 8:14:3375-3388. doi: 10.2147/IJN.S197888. eCollection 2019.

Abstract

Background: Magnetic nanoparticles (MNPs) have been successfully tested for several purposes in medical applications. However, knowledge concerning the effects of nanostructures on elderly organisms is remarkably scarce.

Purpose: To fill part of this gap, this work aimed to investigate biocompatibility and bio-distribution aspects of magnetic nanoparticles coated with citrate (NpCit) in both elderly and young healthy mice.

Methods: NpCit (2.4 mg iron) was administered intraperitoneally, and its toxicity was evaluated for 28 days through clinical, biochemical, hematological, and histopathological examinations. In addition, its biodistribution was evaluated by spectrometric (inductively coupled plasma optical emission spectrometry) and histological methods.

Results: NpCit presented age-dependent effects, inducing very slight and temporary biochemical and hematological changes in young animals. These changes were even weaker than the effects of the aging process, especially those related to the hematological data, tumor necrosis factor alpha, and nitric oxide levels. On the other hand, NpCit showed a distinct set of results in the elderly group, sometimes reinforcing (decrease of lymphocytes and increase of monocytes) and sometimes opposing (erythrocyte parameters and cytokine levels) the aging changes. Leukocyte changes were still observed on the 28th day after treatment in the elderly group. Slight evidence of a decrease in liver and immune functions was detected in elderly mice treated or not treated with NpCit. It was noted that tissue damage or clinical changes related to aging or to the NpCit treatment were not observed. As detected for aging, the pattern of iron biodistribution was significantly different after NpCit administration: extra iron was detected until the 28th day, but in different organs of elderly (liver and kidneys) and young (spleen, liver, and lungs) mice.

Conclusion: Taken together, the data show NpCit to be a stable and reasonably biocompatible sample, especially for young mice, and thus appropriate for biomedical applications. The data showed important differences after NpCit treatment related to the animals' age, and this emphasizes the need for further studies in older animals to appropriately extend the benefits of nanotechnology to the elderly population.

Keywords: ICP-OES; SPIO; elderly; inductively coupled plasma optical emission spectrometry; maghemite nanoparticles; nano-safety; nanotoxicity; superparamagnetic iron oxide nanoparticles.

MeSH terms

  • Aging / physiology*
  • Animals
  • Citric Acid / pharmacology*
  • Coated Materials, Biocompatible / pharmacology*
  • Female
  • Iron / chemistry
  • Lung / drug effects
  • Magnetite Nanoparticles / chemistry*
  • Magnetite Nanoparticles / ultrastructure
  • Mice
  • Nitric Oxide / blood
  • Organ Specificity / drug effects
  • Tissue Distribution / drug effects
  • Tumor Necrosis Factor-alpha / blood

Substances

  • Coated Materials, Biocompatible
  • Magnetite Nanoparticles
  • Tumor Necrosis Factor-alpha
  • Citric Acid
  • Nitric Oxide
  • Iron