Short-term follow-up of intestinal flora in radiation-exposed mice

J Radiat Res. 2019 May 1;60(3):328-332. doi: 10.1093/jrr/rrz002.

Abstract

Some gastrointestinal bacteria, otherwise known as the 'intestinal flora', can cause severe gastrointestinal problems, including sepsis, which are strongly linked to lifestyle-related diseases, including cardiovascular diseases. Several investigations have focused on the long-term changes in the intestinal flora associated with radiation exposure; however, the short-term effects remain unknown. In this study, we tracked the short-term changes in the intestinal flora of mice exposed to different doses of X-ray irradiation (2 Gy and 4 Gy), focusing only on the lactic acid bacteria Bifidobacterium and Lactobacillus. A decrease in the Lactobacillus abundance was detected immediately after irradiation in individuals exposed to both 2 Gy and 4 Gy irradiation. However, mice exposed to 4 Gy of irradiation showed a remarkable increase in Bifidobacterium, indicating a potential role of these bacteria in regeneration of the intestinal epithelial tissue. Studies on changes in intestinal bacteria as a result of radiation exposure are limited. Therefore, continuation of this field of research is expected to provide important fundamental insight into the mechanisms by which radiation causes damage to the intestinal tissues, contributing to the development of sepsis.

Keywords: Bifidobacterium; Lactobacillus; alimentary tract disorder; intestinal flora.

MeSH terms

  • Animals
  • Bacteria / radiation effects
  • Body Weight
  • Feeding Behavior
  • Female
  • Gastrointestinal Microbiome / radiation effects*
  • Mice, Inbred C57BL
  • Radiation Exposure*