Formaldehyde induces the apoptosis of BMCs of BALB/c mice via the PTEN/PI3K/Akt signal transduction pathway

Mol Med Rep. 2019 Jul;20(1):341-349. doi: 10.3892/mmr.2019.10227. Epub 2019 May 9.

Abstract

The International Agency for Research on Cancer has classified formaldehyde (FA) as a leukemogen to humans in 2012; however, the underlying mechanism remains unclear. Phosphatase and tensin homologue deleted on chromosome 10 (PTEN) is a tumor‑suppressor gene and can negatively regulate the phosphoinositide 3‑kinase (PI3K)/protein kinase B (Akt) signal transduction pathway, which is associated with cell proliferation, apoptosis and carcinogenesis. To determine the association between FA and the PTEN/PI3K/Akt signal transduction pathway, flow cytometry, reverse transcription‑quantitative polymerase chain reaction, western blotting and immunohistochemical analysis were conducted. Bone marrow cells were obtained from BALB/c mice, divided into the control (untreated cells) and FA groups, which were treated with various doses of FA (50, 100 and 200 µmol/l). Following treatment with FA for 24 h, cell viability, the cell cycle, apoptosis, and the expression of PTEN, PI3K and Akt, as well as the protein expression of B‑cell lymphoma 2 (Bcl‑2), Bcl‑2‑associated X (Bax), and Caspases‑3 and ‑9 were examined. Furthermore, 10 µmol/PI3K inhibitor (LY294002) was applied to inhibit the PTEN/PI3K/Akt signal transduction pathway and 100 µmol/l FA was selected for treatment; alteration in the cell cycle were analyzed. The results demonstrated that FA could suppress cell viability, and downregulate PTEN and Bcl‑2; the expression of PI3K, Akt, Bax, and Caspases‑3 and ‑9 were upregulated. Additionally, FA was reported to induce cell cycle arrest at the G0/G1 phase and apoptosis. Following the application of LY294002 to inhibit the PTEN/PI3K/Akt signal transduction pathway, the numbers of cells arrested in the G0/G1 phase were significantly increased in the PI3K inhibitor group compared with the control (P<0.01); however, no significant change in the number of G0/G1 cells compared with FA group was observed (P>0.05). The results of the present study suggested that the PTEN/PI3K/Akt signal transduction pathway served an important role in the process of FA‑induced apoptosis, which may be associated with regulating the cell cycle; thus, cell proliferation may be affected.

MeSH terms

  • Animals
  • Apoptosis / drug effects
  • Bone Marrow Cells / drug effects*
  • Bone Marrow Cells / pathology
  • Cell Cycle Checkpoints / drug effects
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Chromones / pharmacology
  • Formaldehyde / pharmacology
  • Formaldehyde / toxicity*
  • Gene Expression Regulation, Neoplastic / drug effects
  • Humans
  • Mice
  • Morpholines / pharmacology
  • Neoplasm Proteins / genetics*
  • Neoplasms / chemically induced
  • Neoplasms / genetics*
  • Neoplasms / pathology
  • PTEN Phosphohydrolase / genetics
  • Phosphatidylinositol 3-Kinases / genetics
  • Proto-Oncogene Proteins c-akt / genetics
  • Signal Transduction / drug effects

Substances

  • Chromones
  • Morpholines
  • Neoplasm Proteins
  • Formaldehyde
  • 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one
  • Phosphatidylinositol 3-Kinases
  • Proto-Oncogene Proteins c-akt
  • PTEN Phosphohydrolase
  • Pten protein, mouse