Correlation between scale-invariant normal-state resistivity and superconductivity in an electron-doped cuprate

Sci Adv. 2019 May 17;5(5):eaav6753. doi: 10.1126/sciadv.aav6753. eCollection 2019 May.

Abstract

An understanding of the normal state in the high-temperature superconducting cuprates is crucial to the ultimate understanding of the long-standing problem of the origin of the superconductivity itself. This so-called "strange metal" state is thought to be associated with a quantum critical point (QCP) hidden beneath the superconductivity. In electron-doped cuprates-in contrast to hole-doped cuprates-it is possible to access the normal state at very low temperatures and low magnetic fields to study this putative QCP and to probe the T ➔ 0 K state of these materials. We report measurements of the low-temperature normal-state magnetoresistance (MR) of the n-type cuprate system La2-x Ce x CuO4 and find that it is characterized by a linear-in-field behavior, which follows a scaling relation with applied field and temperature, for doping (x) above the putative QCP (x = 0.14). The magnitude of the unconventional linear MR decreases as T c decreases and goes to zero at the end of the superconducting dome (x ~ 0.175) above which a conventional quadratic MR is found. These results show that there is a strong correlation between the quantum critical excitations of the strange metal state and the high-T c superconductivity.