Synergistic Effect of Ultrasound and Polyethylene Glycol on the Mechanism of the Controlled Drug Release from Polylactide Matrices

Polymers (Basel). 2019 May 14;11(5):880. doi: 10.3390/polym11050880.

Abstract

In this paper, the synergistic effect of ultrasound and polyethylene glycol (PEG) on the controlled release of a water soluble drug from polylactide (PLA) matrices was studied. When ultrasound was used following the hot melt extrusion (HME) of the PLA/model drug release system, the release of the model drug (Methylene Blue (MB)) from the PLA when immersed in phosphate buffered saline (PBS) was affected by the variation of the parameters of ultrasound. It was found that no more than 2% PLA dissolved during the in-vitro release study, and the release of the MB from the PLA was diffusion controlled and fit well with the Higuchi diffusion model. Polyethylene glycol (PEG), which has high hydrophilicity and rapid dissolution speed, was blended with the PLA during the melt extrusion to enhance the release of the MB. The analysis of the structure and properties of the in-vitro release tablets of PLA/PEG/MB indicated that the ultrasound could improve the dispersion of MB in the PLA/PEG blends and it could also change the structure and properties of the PLA/PEG blends. Due to the dissolution of the PEG in PBS, the release of the MB from the PLA/PEG drug carrier was a combination of diffusion and erosion controlled release. Thus a new mechanism combining of diffusion and erosion models and modified kinetics model was proposed to explain the release behavior.

Keywords: drug release; hot melt extrusion; polyethylene glycol; polylactide; ultrasound.