Exploiting the natural poly(3-hydroxyalkanoates) production capacity of Antarctic Pseudomonas strains: from unique phenotypes to novel biopolymers

J Ind Microbiol Biotechnol. 2019 Aug;46(8):1139-1153. doi: 10.1007/s10295-019-02186-2. Epub 2019 May 14.

Abstract

Extreme environments are a unique source of microorganisms encoding metabolic capacities that remain largely unexplored. In this work, we isolated two Antarctic bacterial strains able to produce poly(3-hydroxyalkanoates) (PHAs), which were classified after 16S rRNA analysis as Pseudomonas sp. MPC5 and MPC6. The MPC6 strain presented nearly the same specific growth rate whether subjected to a temperature of 4 °C 0.18 (1/h) or 30 °C 0.2 (1/h) on glycerol. Both Pseudomonas strains produced high levels of PHAs and exopolysaccharides from glycerol at 4 °C and 30 °C in batch cultures, an attribute that has not been previously described for bacteria of this genus. The MPC5 strain produced the distinctive medium-chain-length-PHA whereas Pseudomonas sp. MPC6 synthesized a novel polyoxoester composed of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate-co-3-hydroxyoctanoate-co-3-hydroxydecanoate-co-3-hydroxydodecanoate). Batch bioreactor production of PHAs in MPC6 resulted in a titer of 2.6 (g/L) and 1.3 (g/L), accumulating 47.3% and 34.5% of the cell dry mass as PHA, at 30 and 4 °C, respectively. This study paves the way for using Antarctic Pseudomonas strains for biosynthesizing novel PHAs from low-cost substrates such as glycerol and the possibility to carry out the bioconversion process for biopolymer synthesis without the need for temperature control.

Keywords: Antarctic Pseudomonas; Exopolysaccharide; Glycerol; Low temperature; Poly(3-hydroxyalkanoates); Psychrophiles.

MeSH terms

  • Antarctic Regions
  • Biopolymers / biosynthesis*
  • Bioreactors
  • Glycerol / metabolism
  • Polyhydroxyalkanoates / biosynthesis*
  • Pseudomonas / genetics
  • Pseudomonas / metabolism*
  • RNA, Ribosomal, 16S / genetics

Substances

  • Biopolymers
  • Polyhydroxyalkanoates
  • RNA, Ribosomal, 16S
  • Glycerol