Imperfect camouflage: how to hide in a variable world?

Proc Biol Sci. 2019 May 15;286(1902):20190646. doi: 10.1098/rspb.2019.0646.

Abstract

Camouflage is an important anti-predator strategy for many animals and is traditionally thought of as being tightly linked to a specific visual background. While much work focuses on optimizing camouflage against one background, this may not be relevant for many species and contexts, as animals may encounter many different habitats throughout their lives due to temporal and spatial variation in their environment. How should camouflage be optimized when an animal or object is seen against multiple visual backgrounds? Various solutions may exist, including colour change to match new environments or use of behaviour to maintain crypsis by choosing appropriate substrates. Here, we focus on a selection of approaches under a third alternative strategy: animals may adopt (over evolution) camouflage appearances that represent an optimal solution against multiple visual scenes. One approach may include a generalist or compromise strategy, where coloration matches several backgrounds to some extent, but none closely. A range of other camouflage types, including disruptive camouflage, may also provide protection in multiple environments. Despite detailed theoretical work determining the plausibility of compromise camouflage and elucidating the conditions under which it might evolve, there is currently mixed experimental evidence supporting its value and little evidence of it in natural systems. In addition, there remain many questions including how camouflage strategies should be defined and optimized, and how they might interact with other types of crypsis and defensive markings. Overall, we provide a critical overview of our current knowledge about how camouflage can enable matching to multiple backgrounds, discuss important challenges of working on this question and make recommendations for future research.

Keywords: anti-predator coloration; camouflage; disruption; vision.

Publication types

  • Research Support, Non-U.S. Gov't
  • Review

MeSH terms

  • Animals
  • Biological Mimicry*
  • Visual Perception*