SSR identification and marker development for sago palm based on NGS genome data

Breed Sci. 2019 Mar;69(1):1-10. doi: 10.1270/jsbbs.18061. Epub 2019 Mar 16.

Abstract

Sago palm (Metroxylon sagu Rottb.) is one of the most productive carbohydrate-producing crops. Unfortunately, only limited information regarding sago palm genetics is available. This study aimed to develop simple sequence repeat (SSR) markers using sago palm NGS genomic data and use these markers to evaluate the genetic diversity of sago palm from Indonesia. De novo assembly of partial sago palm genomic data and subsequent SSR mining identified 29,953 contigs containing 31,659 perfect SSR loci and 31,578 contigs with 33,576 imperfect SSR loci. The perfect SSR loci density was 132.57/Mb, and AG, AAG and AAAT were the most frequent SSR motifs. Five hundred perfect SSR loci were randomly selected and used for designing SSR primers; 93 SSR primer pairs were identified. After synteny analysis using rice genome sequences, 20 primer pairs were validated using 11 sago palm accessions, and seven primers generated polymorphic alleles. Genetic diversity analysis of 41 sago palm accessions from across Indonesia using polymorphic SSR loci indicated the presence of three clusters. These results demonstrated the success of SSR identification and marker development for sago palm based on NGS genome data, which can be further used for assisting sago palm breeding in the future.

Keywords: Metroxylon sagu; SSR mining; SSRs; genome sequencing; microsatellites.