Real-time In Vitro Monitoring of Odorant Receptor Activation by an Odorant in the Vapor Phase

J Vis Exp. 2019 Apr 23:(146):10.3791/59446. doi: 10.3791/59446.

Abstract

Olfactory perception begins with the interaction of odorants with odorant receptors (OR) expressed by olfactory sensory neurons (OSN). Odor recognition follows a combinatorial coding scheme, where one OR can be activated by a set of odorants and one odorant can activate a combination of ORs. Through such combinatorial coding, organisms can detect and discriminate between a myriad of volatile odor molecules. Thus, an odor at a given concentration can be described by an activation pattern of ORs, which is specific to each odor. In that sense, cracking the mechanisms that the brain uses to perceive odor requires the understanding odorant-OR interactions. This is why the olfaction community is committed to "de-orphanize" these receptors. Conventional in vitro systems used to identify odorant-OR interactions have utilized incubating cell media with odorant, which is distinct from the natural detection of odors via vapor odorants dissolution into nasal mucosa before interacting with ORs. Here, we describe a new method that allows for real-time monitoring of OR activation via vapor-phase odorants. Our method relies on measuring cAMP release by luminescence using the Glosensor assay. It bridges current gaps between in vivo and in vitro approaches and provides a basis for a biomimetic volatile chemical sensor.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Video-Audio Media

MeSH terms

  • Cell Line
  • Cyclic AMP / metabolism
  • Humans
  • Nasal Mucosa / drug effects
  • Nasal Mucosa / metabolism
  • Nasal Mucosa / physiology
  • Odorants*
  • Olfactory Perception / drug effects
  • Receptors, Odorant / metabolism*
  • Volatilization

Substances

  • Receptors, Odorant
  • Cyclic AMP