Production of CRISPR/Cas9-Mediated Self-Cleaving Helper-Dependent Adenoviruses

Mol Ther Methods Clin Dev. 2019 Apr 16:13:432-439. doi: 10.1016/j.omtm.2019.04.003. eCollection 2019 Jun 14.

Abstract

Prolonged expression of CRISPR/Cas9 raises concerns about off-target cleavage, cytotoxicity, and immune responses. To address these issues, we have developed a system to produce helper-dependent adenoviruses that express CRISPR/Cas9 to direct cleavage of the vectors' own genome after transduction of target cells. To prevent self-cleavage during vector production, it was necessary to downregulate Cas9 mRNA as well as inhibit Cas9 protein activity. Cas9 mRNA downregulation was achieved by inserting the target sequences for the helper-virus-encoded miRNA, mivaRNAI, and producer-cell-encoded miRNAs, hsa-miR183-5p, and hsa-miR218-5p, into the 3' UTR of the HDAd-encoded Cas9 expression cassette. Cas9 protein activity was inhibited by expressing anti-CRISPR proteins AcrIIA2 and AcrAII4 from both the producer cells and the helper virus. After purification, these helper-dependent adenoviruses will perform CRISPR/Cas9-mediated self-cleavage in the transduced target cells, thereby limiting the duration of Cas9 expression and thus represent an important platform for improving the safety of gene editing by CRISPR/Cas9.

Keywords: CRISPR; Cas9; adenovirus; gene editing; helper-dependent; indels.