Robotic System for MRI-guided Focal Laser Ablation in the Prostate

IEEE ASME Trans Mechatron. 2017 Feb;22(1):107-114. doi: 10.1109/TMECH.2016.2611570. Epub 2016 Sep 22.

Abstract

MRI-conditional robotic platforms have proved to be an effective approach for image guided interventions. In this study, a computer-assisted, pneumatically-actuated robot was designed, built, and tested for MRI-guided prostate cancer focal laser ablation (FLA). The robotic manipulator provides two active planar degrees of freedom (DoFs) by using a customized CoreXY frame, and one passive rotational DoF. A remote insertion mechanism improves the surgical workflow by keeping the patients inside the scanner during needle insertion. The robotic manipulator was tested in a 3T MR scanner to evaluate its MR compliance, and the results demonstrated that the signal-to-noise ratio (SNR) variation was less than 8%. The in-scanner template positioning accuracy test demonstrated that the manipulator achieves high targeting accuracy with a mean error of 0.46 mm and a standard deviation of 0.25mm. Phantom studies have shown that the needle insertion accuracy of the manipulator is within 2mm (Mean = 1.7mm, StD = 0.2mm).

Keywords: Focal Laser Ablation; Image Guided Therapy; MRI; Prostate Cancer; Robot.