Semisolid State Sintering Behavior of Aluminum⁻Stainless Steel 316L Composite Materials by Powder Metallurgy

Materials (Basel). 2019 May 7;12(9):1473. doi: 10.3390/ma12091473.

Abstract

Aluminum (Al)-stainless steel 316L (SUS316L) composites were successfully fabricated by the spark plasma sintering process (SPS) using pure Al and SUS316L powders as raw materials. The Al-SUS316L composite powder comprising Al with 50 vol.% of SUS316L was prepared by a ball milling process. Subsequently, it was sintered at 630 °C at a pressure of 200 MPa and held for 5 min in a semisolid state. The X-ray diffraction (XRD) patterns show that intermetallic compounds such as Al13Fe4 and AlFe3 were created in the Al-SUS316L composite because the Al and SUS316L particles reacted together during the SPS process. The presence of these intermetallic compounds was also confirmed by using XRD, scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), and EDS mapping. The mechanical hardness of the Al-SUS316L composites was analyzed by a Vickers hardness tester. Surprisingly, the Al-SU316L composite exhibited a Vickers hardness of about 620 HV. It can be concluded that the Al-SUS316L composites fabricated by the SPS process are lightweight and high-hardness materials that could be applied in the engineering industry such as in automobiles, aerospace, and shipbuilding.

Keywords: aluminum; intermetallics; metal matrix composites; microstructure; spark plasma sintering; stainless steel316L.