MTHFR gene polymorphisms in hypothyroidism and hyperthyroidism among Jordanian females

Arch Endocrinol Metab. 2019 May-Jun;63(3):280-287. doi: 10.20945/2359-3997000000133. Epub 2019 May 2.

Abstract

Objective: Methylenetetrahydrofolate reductase (MTHFR) is involved in DNA methylation that is associated with autoimmune pathology. We investigated the association between MTHFR genetic polymorphisms at g.677C>T and g.1298A>C and their haplotypes, and the risk of thyroid dysfunction among Jordanian females.

Subjects and methods: A case-control study involving 98 hypothyroidism cases, 66 hyperthyroidism cases and 100 controls was conducted. Polymerase chain reaction/restriction fragment length polymorphism technique was performed to determine genotypes. Statistical analysis using SPSS software was performed.

Results: Genetic analysis showed a significant difference in genotype frequency of g.1298A>C between cases, and controls [hypothyroidism: AA (45.9%), AC (37.8%), CC (16.3%); hyperthyroidism: AA (9.1%), AC (69.7%), CC (21.2%); controls: AA (37.8%), AC (29.6%), CC (32.7%); CChypo vs. AAhypo: 2.55, 95% CI: (1.18-5.52); OR at least on Chypo: 1.79, 95% CI: (1.07-2.99)]; CChyper vs. AAhyper: 4.01, 95% CI: (1.79-9.01); OR at least on Chyper: 0.18, 95% CI: (0.07-0.48)]. There was no significant difference in genotype frequency of g.677C>T between cases and controls [hypothyroidism: CC (50.0%), CT (32.7%), TT (17.3%); hyperthyroidism: CC (77.3%), CT (15.2%), TT (7.6%); controls: CC (55.6%), CT (32.3%), TT (12.1%)]. There was a significant difference of MTHFR haplotypes among hypothyroidism cases and controls. TA and CC had a lower hypothyroidism risk whereas; TC showed a higher risk.

Conclusions: g.1298A>C genetic polymorphism of MTHFR may modulate the risk of thyroid disease. CC, TA, and TC haplotypes affect the risk of hypothyroidism. Larger samples should be included in the future to verify the role of MTHFR polymorphisms in thyroid diseases.

MeSH terms

  • Adult
  • Alleles
  • Case-Control Studies
  • DNA Methylation
  • Female
  • Genetic Predisposition to Disease
  • Genotype
  • Haplotypes
  • Humans
  • Hyperthyroidism / genetics*
  • Hypothyroidism / genetics*
  • Jordan
  • Methylenetetrahydrofolate Reductase (NADPH2) / genetics*
  • Middle Aged
  • Polymerase Chain Reaction
  • Polymorphism, Restriction Fragment Length / genetics*
  • Polymorphism, Single Nucleotide / genetics*
  • Risk Factors
  • Young Adult

Substances

  • MTHFR protein, human
  • Methylenetetrahydrofolate Reductase (NADPH2)