Strong Influence of Oxygen Vacancy Location on Charge Carrier Losses in Reduced TiO2 Nanoparticles

J Phys Chem Lett. 2019 Jun 6;10(11):2676-2683. doi: 10.1021/acs.jpclett.9b00987. Epub 2019 May 10.

Abstract

Oxygen vacancies in TiO2 nanoparticles are important for charge carrier dynamics, with recent studies reporting contradictory results on TiO2 nanoparticle photocatalytic activity. We demonstrate that ground state multiplicity, defect levels, and formation energies depend strongly on vacancy location. Quantum dynamics simulations show that charges are trapped within several picoseconds and recombine over a broad range of time scales from tens of picoseconds to nanoseconds. Specifically, nanoparticles with missing partially coordinated surface oxygens showed fast recombination, while nanoparticles with missing highly coordinated subsurface oxygens or singly coordinated oxygens at tips showed slow recombination, even slower than in the pristine system. The results are rationalized by energy gaps and electron-hole localization, the latter determining nonadiabatic coupling and quantum coherence time. The diverse charge recombination scenarios revealed by the nonadiabatic dynamics simulations rationalize the contradictory experimental results for photocatalytic activity and provide guidelines for rational design of nanoscale metal oxides for solar energy harvesting and utilization.