Direct Radiation Detection by a Semiconductive Metal-Organic Framework

J Am Chem Soc. 2019 May 22;141(20):8030-8034. doi: 10.1021/jacs.9b01270. Epub 2019 May 9.

Abstract

Semiconductive metal-organic frameworks (MOFs) have attracted extraordinary research interest in recent years; however, electronic applications based on these emerging materials are still in their infancy. Herein, we show that a lanthanide-based semiconductive MOF (SCU-12) can effectively convert X-ray photons to electrical current signals under continuous hard X-ray radiation. The semiconductive MOF-based polycrystalline detection device presents a promising X-ray sensitivity with the value of 23.8 μC Gyair-1 cm-2 under 80 kVp X-ray exposure, competitive with the commercially available amorphous selenium (α-Se) detector. The lowest detectable X-ray dose rate is 0.705 μGy s-1, representing the record value among all X-ray detectors fabricated by polycrystalline materials. This work discloses the first demonstration of hard radiation detection by semiconductive MOFs, providing a horizon that can guide the synthesis of a new generation of radiation detection materials by taking the advantages of structural designability and property tunability in the MOF system.

Publication types

  • Research Support, Non-U.S. Gov't