Intensity-dependence of exercise and active recovery in high-intensity interval training

J Sports Med Phys Fitness. 2019 Dec;59(12):1937-1943. doi: 10.23736/S0022-4707.19.09521-5. Epub 2019 Apr 30.

Abstract

Background: High-intensity interval training (HIIT) with interspersing active recovery is an effective mode of exercise training in cohorts ranging from athletes to patients. Here, we assessed the intensity-dependence of the intervals and active recovery bouts for permitting a sustainable HIIT protocol.

Methods: Fourteen males completed 4x4-minute HIIT protocols where intensities of intervals ranged 80-100% of maximal oxygen uptake (VO2max) and active recovery ranged 60-100% of lactate (La-) threshold (LT). Blood La- measurements indicated fatigue, while tolerable duration of intervals indicated sustainability.

Results: HIIT at 100% of VO2max allowed 44±10% [30-70%] completion, i.e. fatigue occurred after 7minutes:6seconds of the intended 16 minutes of high intensity, whereas HIIT at 95-80% of VO2max was 100% sustainable (P<0.01). Measured intensity did not differ from intended intensity across the protocols (P>0.05). Blood La- concentration [La-] increased to 9.3±1.4mM during HIIT at 100% of VO2max, whereas at 80-95% of VO2max stabilized at 2-6mM in an intensity-dependent manner (P<0.01 vs. 100% of VO2max and P<0.05 vs. baseline). Active recovery at 60-70% of LT during HIIT associated with steady-state blood [La-] peaking at 6-7mM, whereas at 80-100% of LT, blood [La-] accumulated to 10-13mM (P<0.05). After HIIT, active recovery at 80-90% of LT cleared blood [La-] 90% faster than at 60-70% of LT (P<0.05).

Conclusions: To permit highest exercise stress during 4x4-minute HIIT, exercise intensity should be set to 95% of VO2max, whereas active recovery should be set to 60-70% of LT during HIIT and 80-90% of LT after HIIT to most efficiently prevent excess La- and aid recovery.

MeSH terms

  • Adult
  • Athletes / statistics & numerical data*
  • Cohort Studies
  • Exercise / physiology
  • High-Intensity Interval Training*
  • Humans
  • Lactic Acid / blood
  • Male
  • Oxygen Consumption
  • Recovery of Function
  • Young Adult

Substances

  • Lactic Acid