Electrodes boost microbial metabolism to mineralize antibiotics in manure

Bioelectrochemistry. 2019 Aug:128:283-290. doi: 10.1016/j.bioelechem.2019.04.008. Epub 2019 Apr 17.

Abstract

Livestock manures are potential sources of antibiotics in the environment. Sulfamethazine (SMZ), frequently used in veterinary medicine, can enter the environment by using manure as soil fertilizer due to its incomplete absorption in the animal gut and its unmetabolized excretion. The objective of this study was to evaluate the mineralization of 14C-labelled SMZ in manure under a new redox scenario provided by microbial electrochemical reactors, termed microbial electroremediating cells (MERC). These devices aim to overcome the electron acceptor limitation in bacterial oxidative metabolism by means of using electrodes to enhance the biodegradation of pollutants in the environment. Our results revealed that the total degradation of 14C-SMZ reached 43.5% in short term batch laboratory scale experiments under reducing conditions (-400 mV vs. Ag/AgCl). Actually, SMZ mineralization was enhanced up to 10-fold in the early stages (after 2 weeks) in comparison with an electrode-free natural attenuation assay. Moreover, mineralization showed a dependence on electrode potential, with negligible results for conditions set to +400 mV vs Ag/AgCl. The impact of merging electrodes and microorganisms for manure bioremediation suggests a promising future for this emerging technology to treat polluted livestock wastes and prevent soil and groundwater pollution.

Keywords: Antibiotic; Bioremediation; Manure; Microbial electrochemical technologies; Microbial fuel cell; Sulfamethazine.

MeSH terms

  • Animals
  • Anti-Infective Agents / metabolism*
  • Bacteria / metabolism
  • Biodegradation, Environmental
  • Bioelectric Energy Sources
  • Electrodes*
  • Manure / microbiology*
  • Minerals / metabolism*
  • Soil Pollutants / metabolism
  • Sulfamethazine / metabolism*
  • Swine
  • Water Pollutants, Chemical / metabolism

Substances

  • Anti-Infective Agents
  • Manure
  • Minerals
  • Soil Pollutants
  • Water Pollutants, Chemical
  • Sulfamethazine