Laser-induced subwavelength structures by microdroplet superlens

Opt Express. 2019 Mar 18;27(6):8130-8142. doi: 10.1364/OE.27.008130.

Abstract

Nanoscale patterns on rigid or flexible substrates are of considerable interest in modern nanophotonics and optoelectronics devices. Subwavelength structures are produced in this study by using a laser beam and microdroplets that carry nanoparticles to the deposition substrate. These droplets are generated from an aqueous suspension of nanoparticles by electrospray and dispensed through a conical hollow laser beam so that laser-droplet interactions occur immediately above the substrate surface. Each microdroplet serves the dual role as a nanoparticle carrier to the substrate and as a superlens for focusing the laser beam to a subwavelength diameter. This focused beam vaporizes the droplet and sinters the nanoparticles on the substrate. The deposition of subwavelength nanostructures and thin films on a silicon wafer are demonstrated in this paper. This process may be applied to produce novel nanophotonics and electronics devices involving a variety of subwavelength patterns including an ordered array of semiconductor nanoparticles.