Review of cosmic phase transitions: their significance and experimental signatures

Rep Prog Phys. 2019 Jul;82(7):076901. doi: 10.1088/1361-6633/ab1f55. Epub 2019 May 3.

Abstract

The study of cosmic phase transitions are of central interest in modern cosmology. In the standard model of cosmology the Universe begins in a very hot state, right after at the end of inflation via the process of reheating/preheating, and cools to its present temperature as the Universe expands. Both new and existing physics at any scale can be responsible for catalyzing either first, second or cross over phase transition, which could be either thermal or non-thermal with a potential observable imprints. Thus this field prompts a rich dialogue between gravity, particle physics and cosmology. It is all but certain that at least two cosmic phase transitions have occurred-the electroweak and the QCD phase transitions. The focus of this review will be primarily on phase transitions above such scales, We review different types of phase transitions that can appear in our cosmic history, and their applications and experimental signatures in particular in the context of exciting gravitational waves, which could be potentially be constrained by LIGO/VIRGO, Kagra, LISA, and Decigo.