Evidence of a Nodal Line in the Superconducting Gap Symmetry of Noncentrosymmetric ThCoC_{2}

Phys Rev Lett. 2019 Apr 12;122(14):147001. doi: 10.1103/PhysRevLett.122.147001.

Abstract

The newly discovered noncentrosymmetric superconductor ThCoC_{2} exhibits numerous types of unconventional behavior in the field dependent heat capacity data. Here we present the first measurement of the gap symmetry of ThCoC_{2} by muon spin rotation and relaxation (μSR) measurements. The temperature dependence of the magnetic penetration depth measured using the transverse field μSR experiment reveals the evidence of a nodal pairing symmetry. To understand this finding, we carry out calculations of the superconducting pairing eigenvalue and eigenfunction (pairing symmetry) due to the spin-fluctuation mechanism by directly implementing the ab initio band structures. We find that the system possesses a single Fermi surface with considerable three dimensionality and a strong nesting along the k_{z} direction. Such nesting promotes a superconducting state with a cosk_{z}-like pairing symmetry with a prominent nodal line on the k_{z}=±π/2 plane. The result agrees well with the experimental data.