Combined effect of ZnO nanoripples and solvent additive on the nanomorphology and performance of PTB7-Th: PC71BM organic solar cells

Nanotechnology. 2019 Sep 20;30(38):385204. doi: 10.1088/1361-6528/ab1ec6. Epub 2019 May 2.

Abstract

In bulk heterojunction organic solar cells (OSCs), nanomorphology of the photoactive layer plays a crucial role in determining photocurrent and fill factor (FF) of OSCs, and therefore it is essential to control the nanomorphology of the photoactive layer to fabricate devices with high power conversion efficiency (PCE). We demonstrate the combined effects of a ZnO nanorippled electron transport layer (ETL) and solvent additive (1,8-diiodooctane (DIO)) on the nanomorphology and performance of a model OSC in an inverted geometry. The photoactive layer in the model OSC is composed of Poly [4,8-bis (5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexyl)-3-fluorothieno[3,4-b]thiophene-)-2-carboxylate-2-6-diyl] (PTB7-Th):phenyl-C71-butyric acid methyl ester (PC71BM) blend. It is observed that the use of ZnO nanoripples as an ETL and DIO as a solvent additive facilitates the formation of near ideal nanomorphology of bi-continuous interpenetrating network of donor and acceptor. This is confirmed by morphological studies using atomic force microscopy, scanning electron microscopy and transmission electron microscopy. Photo-electrochemical impedance spectroscopy measurements confirm that obtained nanomorphology of bicontinuous interpenetrating network is contributing to the improved device performance. The device with 3 vol% DIO, with underneath ZnO nanoripples exhibited improved current density (J sc), FF, open circuit voltage (V oc) and PCE of 15.57 mA cm-2, 64.50%, 0.81V and 8.20%, respectively.