Hyaluronated liposomes containing H2S-releasing doxorubicin are effective against P-glycoprotein-positive/doxorubicin-resistant osteosarcoma cells and xenografts

Cancer Lett. 2019 Aug 1:456:29-39. doi: 10.1016/j.canlet.2019.04.029. Epub 2019 Apr 29.

Abstract

Doxorubicin (dox) is one of the first-line drug in osteosarcoma treatment but its effectiveness is limited by the efflux pump P-glycoprotein (Pgp) and by the onset of cardiotoxicity. We previously demonstrated that synthetic doxs conjugated with a H2S-releasing moiety (Sdox) were less cardiotoxic and more effective than dox against Pgp-overexpressing osteosarcoma cells. In order to increase the active delivery to tumor cells, we produced hyaluronic acid (HA)-conjugated liposomes containing Sdox (HA-Lsdox), exploiting the abundance of the HA receptor CD44 in osteosarcoma. HA-Lsdox showed favorable drug-release profile and higher toxicity in vitro and in vivo than dox or the FDA-approved liposomal dox Caelyx® against Pgp-overexpressing osteosarcoma, displaying the same cardiotoxicity profile of Caelyx®. Differently from dox, HA-Lsdox delivered the drug within the endoplasmic reticulum (ER), inducing protein sulfhydration and ubiquitination, and activating a ER stress pro-apoptotic response mediated by CHOP. HA-Lsdox also sulfhydrated the nascent Pgp in the ER, reducing its activity. We propose HA-Lsdox as an innovative tool noteworthy to be tested in Pgp-overexpressing patients, who are frequently less responsive to standard treatments in which dox is one of the most important drugs.

Keywords: Endoplasmic reticulum stress; Liposomal doxorubicin; Osteosarcoma; P-glycoprotein; Protein sulfhydration.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily B / genetics
  • ATP Binding Cassette Transporter, Subfamily B / metabolism
  • Animals
  • Antibiotics, Antineoplastic / administration & dosage*
  • Antibiotics, Antineoplastic / chemistry
  • Antibiotics, Antineoplastic / metabolism
  • Bone Neoplasms / drug therapy*
  • Bone Neoplasms / genetics
  • Bone Neoplasms / metabolism
  • Bone Neoplasms / pathology
  • Cell Line, Tumor
  • Doxorubicin / administration & dosage
  • Doxorubicin / analogs & derivatives*
  • Doxorubicin / chemistry
  • Doxorubicin / metabolism
  • Drug Compounding
  • Drug Liberation
  • Drug Resistance, Neoplasm*
  • Female
  • Humans
  • Hyaluronan Receptors / metabolism
  • Hyaluronic Acid / administration & dosage*
  • Hyaluronic Acid / chemistry
  • Hyaluronic Acid / metabolism
  • Hydrogen Sulfide / administration & dosage*
  • Hydrogen Sulfide / chemistry
  • Hydrogen Sulfide / metabolism
  • Liposomes
  • Mice, Inbred BALB C
  • Osteosarcoma / drug therapy*
  • Osteosarcoma / genetics
  • Osteosarcoma / metabolism
  • Osteosarcoma / pathology
  • Polyethylene Glycols / administration & dosage
  • Polyethylene Glycols / chemistry
  • Polyethylene Glycols / metabolism
  • Tumor Burden / drug effects
  • Xenograft Model Antitumor Assays

Substances

  • ABCB1 protein, human
  • ATP Binding Cassette Transporter, Subfamily B
  • Antibiotics, Antineoplastic
  • CD44 protein, human
  • Hyaluronan Receptors
  • Liposomes
  • liposomal doxorubicin
  • Polyethylene Glycols
  • Doxorubicin
  • Hyaluronic Acid
  • Hydrogen Sulfide