Non-canonical HIF-1 stabilization contributes to intestinal tumorigenesis

Oncogene. 2019 Jul;38(28):5670-5685. doi: 10.1038/s41388-019-0816-4. Epub 2019 May 1.

Abstract

The hypoxia-inducible transcription factor HIF-1 is appreciated as a promising target for cancer therapy. However, conditional deletion of HIF-1 and HIF-1 target genes in cells of the tumor microenvironment can result in accelerated tumor growth, calling for a detailed characterization of the cellular context to fully comprehend HIF-1's role in tumorigenesis. We dissected cell type-specific functions of HIF-1 for intestinal tumorigenesis by lineage-restricted deletion of the Hif1a locus. Intestinal epithelial cell-specific Hif1a loss reduced activation of Wnt/β-catenin, tumor-specific metabolism and inflammation, significantly inhibiting tumor growth. Deletion of Hif1a in myeloid cells reduced the expression of fibroblast-activating factors in tumor-associated macrophages resulting in decreased abundance of tumor-associated fibroblasts (TAF) and robustly reduced tumor formation. Interestingly, hypoxia was detectable only sparsely and without spatial association with HIF-1α, arguing for an importance of hypoxia-independent, i.e., non-canonical, HIF-1 stabilization for intestinal tumorigenesis that has not been previously appreciated. This adds a further layer of complexity to the regulation of HIF-1 and suggests that hypoxia and HIF-1α stabilization can be uncoupled in cancer. Collectively, our data show that HIF-1 is a pivotal pro-tumorigenic factor for intestinal tumor formation, controlling key oncogenic programs in both the epithelial tumor compartment and the tumor microenvironment.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Colorectal Neoplasms / genetics
  • Colorectal Neoplasms / metabolism*
  • Colorectal Neoplasms / pathology
  • Female
  • Hypoxia-Inducible Factor 1, alpha Subunit / genetics
  • Hypoxia-Inducible Factor 1, alpha Subunit / metabolism*
  • Intestinal Mucosa / metabolism
  • Intestinal Mucosa / pathology
  • Macrophages / pathology
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Oncogenes
  • Protein Stability
  • Tumor Microenvironment

Substances

  • Hif1a protein, mouse
  • Hypoxia-Inducible Factor 1, alpha Subunit