Low-energy/pulse response and high-resolution-CMOS camera for spatiotemporal femtosecond laser pulses characterization @ 1.55 μm

Rev Sci Instrum. 2019 Apr;90(4):045116. doi: 10.1063/1.5071447.

Abstract

In this work, we present a commercial CMOS (Complementary Metal Oxide Semiconductor) Raspberry Pi camera implemented as a Near-Infrared detector for both spatial and temporal characterization of femtosecond pulses delivered from a femtosecond Erbium Doped Fiber laser (fs-EDFL) @ 1.55 µm, based on the Two Photon Absorption (TPA) process. The capacity of the device was assessed by measuring the spatial beam profile of the fs-EDFL and comparing the experimental results with the theoretical Fresnel diffraction pattern. We also demonstrate the potential of the CMOS Raspberry Pi camera as a wavefront sensor through its a nonlinear response in a Shack-Hartmann array and for the temporal characterization of the femtosecond pulses delivered from the fs-EDFL through TPA Intensity autocorrelation measurements. The direct pulse detection and measurement, through the nonlinear response with a CMOS, is proposed as a novel and affordable high-resolution and high-sensitivity alternative to costly detectors such as CCDs, wavefront sensors and beam profilers @ 1.55 µm. The measured fluence threshold, down to 17.5 µJ/cm2, and pJ/pulse energy response represents the lowest reported values applied as a beam profiler and a TPA Shack-Hartmann wavefront sensor, to our knowledge.