A Zero-Valent Pd/Fe Loaded and Nanofibrillated Cellulose-Reinforced Carboxymethyl Cellulose Hydrogel for Dechlorination of 2,4,6-Trichlorophenol

J Nanosci Nanotechnol. 2019 Nov 1;19(11):7261-7268. doi: 10.1166/jnn.2019.16621.

Abstract

A full-cellulose derived hydrogel, composed of carboxymethyl cellulose (CMC) and nanofibrillated cellulose (NFC), was successfully manufactured and immobilized with Pd/Fe bimetallic nanoparticles for the dechlorination of 2,4,6-trichlorophenol. The NFC-reinforced CMC hydrogels with or without loading of bimetallic nanoparticles were characterized by Fourier transform infrared spectroscopy, Transmission electron microscopy, Scanning electron microscopy-energy dispersive X-ray, and X-ray diffraction analyses. The effect of amounts of NFC on the loading capacity of Pd/Fe, mechanical properties and specific Brunauer-Emmett-Teller surface areas of NFC-reinforced CMC hydrogel was also investigated. The experimental results showed that Pd/Fe bimetallic nanoparticles were dispersed and fixed in the hydrogel matrix with the nanosize spherical shape. The hydrogel would protect the Pd/Fe nanoparticles from oxidation, and thus providing long-term stability in comparison with only NFC-coated Pd/Fe nanoparticles. The hydrogel loaded with Pd/Fe nanoparticles, as a soft material catalytic system, was investigated to dechlorinate 2,4,6-trichlorophenol and was found to be very effective.

Publication types

  • Research Support, Non-U.S. Gov't