In situ probing electrified interfacial water structures at atomically flat surfaces

Nat Mater. 2019 Jul;18(7):697-701. doi: 10.1038/s41563-019-0356-x. Epub 2019 Apr 29.

Abstract

Solid/liquid interfaces are ubiquitous in nature and knowledge of their atomic-level structure is essential in elucidating many phenomena in chemistry, physics, materials science and Earth science1. In electrochemistry, in particular, the detailed structure of interfacial water, such as the orientation and hydrogen-bonding network in electric double layers under bias potentials, has a significant impact on the electrochemical performances of electrode materials2-4. To elucidate the structures of electric double layers at electrochemical interfaces, we combine in situ Raman spectroscopy and ab initio molecular dynamics and distinguish two structural transitions of interfacial water at electrified Au single-crystal electrode surfaces. Towards negative potentials, the interfacial water molecules evolve from structurally 'parallel' to 'one-H-down' and then to 'two-H-down'. Concurrently, the number of hydrogen bonds in the interfacial water also undergoes two transitions. Our findings shed light on the fundamental understanding of electric double layers and electrochemical processes at the interfaces.

Publication types

  • Research Support, Non-U.S. Gov't