A Fourier-Based Image Formation Algorithm for Geo-Stationary GNSS-Based Bistatic Forward-Looking Synthetic Aperture Radar

Sensors (Basel). 2019 Apr 26;19(9):1965. doi: 10.3390/s19091965.

Abstract

A Geo-Stationary GNSS-based Bistatic Forward-Looking Synthetic Aperture Radar (GeoSta-GNSS-BFLSAR) system is a particular kind of passive bistatic SAR system. In this system, a geo-stationary GNSS is used as the transmitter, while the receiver is deployed on a moving aircraft, which travels towards a target in a straight line. It is expected that such a radar system has potential for self-landing, self-navigation and battlefield information acquisition applications, etc. Up to now, little information from a research perspective can be found about GeoSta-GNSS-BFLSAR systems. To address this information gap, this paper proposes a preliminary image formation algorithm for GeoSta-GNSS-BFLSAR. The full details of the mathematical derivation are given. It is highlighted that, to overcome the long dwell time and spatial variance of GeoSta-GNSS-BFLSAR, a modified migration correction factor must be designed. In addition, the system performances and technical limitations of GeoSta-GNSS-BFLSAR such as focusing depth and spatial resolution are analytically discussed. In the end, a set of simulations including the image formation algorithm, focusing depth and spatial resolution were conducted for verification. It is demonstrated that the focusing performances of the proposed algorithm have a high level of similarity with the theoretical counterparts. This article thus proves the feasibility of GeoSta-GNSS-BFLSAR systems from a simulation level and establishes a foundation for the real applications of such a radar scheme in the future.

Keywords: GNSS; forward looking SAR; image formation.