Host metabolites stimulate the bacterial proton motive force to enhance the activity of aminoglycoside antibiotics

PLoS Pathog. 2019 Apr 29;15(4):e1007697. doi: 10.1371/journal.ppat.1007697. eCollection 2019 Apr.

Abstract

Antibiotic susceptibility of bacterial pathogens is typically evaluated using in vitro assays that do not consider the complex host microenvironment. This may help explaining a significant discrepancy between antibiotic efficacy in vitro and in vivo, with some antibiotics being effective in vitro but not in vivo or vice versa. Nevertheless, it is well-known that antibiotic susceptibility of bacteria is driven by environmental factors. Lung epithelial cells enhance the activity of aminoglycoside antibiotics against the opportunistic pathogen Pseudomonas aeruginosa, yet the mechanism behind is unknown. The present study addresses this gap and provides mechanistic understanding on how lung epithelial cells stimulate aminoglycoside activity. To investigate the influence of the local host microenvironment on antibiotic activity, an in vivo-like three-dimensional (3-D) lung epithelial cell model was used. We report that conditioned medium of 3-D lung cells, containing secreted but not cellular components, potentiated the bactericidal activity of aminoglycosides against P. aeruginosa, including resistant clinical isolates, and several other pathogens. In contrast, conditioned medium obtained from the same cell type, but grown as conventional (2-D) monolayers did not influence antibiotic efficacy. We found that 3-D lung cells secreted endogenous metabolites (including succinate and glutamate) that enhanced aminoglycoside activity, and provide evidence that bacterial pyruvate metabolism is linked to the observed potentiation of antimicrobial activity. Biochemical and phenotypic assays indicated that 3-D cell conditioned medium stimulated the proton motive force (PMF), resulting in increased bacterial intracellular pH. The latter stimulated antibiotic uptake, as determined using fluorescently labelled tobramycin in combination with flow cytometry analysis. Our findings reveal a cross-talk between host and bacterial metabolic pathways, that influence downstream activity of antibiotics. Understanding the underlying basis of the discrepancy between the activity of antibiotics in vitro and in vivo may lead to improved diagnostic approaches and pave the way towards novel means to stimulate antibiotic activity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / pharmacology
  • Biofilms / drug effects
  • Cells, Cultured
  • Culture Media, Conditioned / pharmacology*
  • Epithelial Cells / drug effects
  • Epithelial Cells / metabolism
  • Epithelial Cells / microbiology
  • Humans
  • Lung / drug effects
  • Lung / metabolism*
  • Lung / microbiology
  • Metabolome*
  • Microbial Sensitivity Tests
  • Proton-Motive Force / drug effects*
  • Pseudomonas Infections / drug therapy*
  • Pseudomonas Infections / metabolism
  • Pseudomonas Infections / microbiology
  • Pseudomonas aeruginosa / drug effects*
  • Tobramycin / pharmacology*

Substances

  • Anti-Bacterial Agents
  • Culture Media, Conditioned
  • Tobramycin

Grants and funding

This work was funded by a research grant of the European Society for Clinical Microbiology and Infectious Diseases (ESCMID - https://www.escmid.org/) (AC), by an Odysseus grant of the Research Foundation Flanders (G.0.E53.14N) (http://www.fwo.be/en/) (AC), and by a Concerted Research Action Grant from the Special Research Fund of Ghent University (https://www.ugent.be/en) (TC, SVC). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.