Stable DNA Motifs, 1D and 2D Nanostructures Constructed from Small Circular DNA Molecules

J Vis Exp. 2019 Apr 12:(146). doi: 10.3791/58744.

Abstract

This article presents a detailed protocol for synthesis of small circular DNA molecules, annealing of circular DNA motifs, and construction of 1D and 2D DNA nanostructures. Over decades, the rapid development of DNA nanotechnology is attributed to the use of linear DNAs as the source materials. For example, the DAO (double crossover, antiparallel, odd half-turns) tile is well-known as a building block for construction of 2D DNA lattices; the core structure of DAO is made from two linear single-stranded (ss) oligonucleotides, like two ropes making a right hand granny knot. Herein, a new type of DNA tiles called cDAO (coupled DAO) are built using a small circular ss-DNA of c64nt or c84nt (circular 64 or 84 nucleotides) as the scaffold strand and several linear ss-DNAs as the staple strands. Perfect 1D and 2D nanostructures are assembled from cDAO tiles: infinite nanowires, nanospirals, nanotubes, nanoribbons; and finite nano-rectangles. Detailed protocols are described: 1) preparation by T4 ligase and purification by denaturing PAGE (polyacrylamide gel electrophoresis) of small circular oligonucleotides, 2) annealing of stable circular tiles, followed by native PAGE analysis, 3) assembling of infinite 1D nanowires, nanorings, nanospirals, infinite 2D lattices of nanotubes and nanoribbons, and finite 2D nano-rectangles, followed by AFM (Atomic Force Microscopy) imaging. The method is simple, robust, and affordable for most labs.

Publication types

  • Research Support, Non-U.S. Gov't
  • Video-Audio Media

MeSH terms

  • DNA, Circular / chemistry
  • DNA, Circular / genetics*
  • Nanostructures / chemistry*
  • Nucleic Acid Conformation
  • Nucleotide Motifs / genetics*
  • Ultraviolet Rays

Substances

  • DNA, Circular