Stable Cycling Lithium-Sulfur Solid Batteries with Enhanced Li/Li10GeP2S12 Solid Electrolyte Interface Stability

ACS Appl Mater Interfaces. 2019 May 22;11(20):18436-18447. doi: 10.1021/acsami.9b03726. Epub 2019 May 8.

Abstract

We herein explore a facile and straightforward approach to enhance the interface stability between the lithium superionic conducting Li10GeP2S12 (LGPS) solid electrolyte and Li metal by employing ionic liquid such as 1 M lithium bis(trifluoromethanesulfonyl)imide (LiTFSI)/ N-methyl- N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR13TFSI) as the interface modifier. The results demonstrated the presence of 1 M LiTFSI/PYR13TFSI ionic liquid; the interface stability at the electrode/solid electrolyte (i.e., Li/LGPS) was improved remarkably by forming an in situ solid electrolyte interphase (SEI) layer. As a result, an effectively reduced interfacial resistance from 2021 to 142 Ω cm2 and stable Li stripping/plating performance (over 1200 h at 0.038 mA cm-2 and 1000 h at 0.1 mA cm-2) were achieved in the Li/LGPS/Li symmetric cells. On this basis, the Li-S solid-state batteries were further architectured with one of the S@C composite [where C is the ketjen black carbon (KBC) or PBX 51-type activated carbon (PBX51C) or multiwalled carbon nanotubes (MCNTs)] cathode and the LGPS solid electrolyte. The batteries with S@KBC electrodes delivered an excellent discharge/charge performance with a high initial discharge capacity of 1017 mA h g-1 and better stability than those of the batteries with the S@PBX51C and S@MCNTs electrodes. High surface area, unique beneficial pore structure, and better particle dispersion of sulfur in the S@KBC composite facilitate high sulfur utilization and also increase the intimate contact between the electrode and LGPS solid electrolyte during the discharge/charge process.

Keywords: LiGePS solid electrolyte; carbon materials; electrode/electrolyte interface stability; ionic liquid; lithium−sulfur batteries.