Maskless Spatioselective Functionalization of Silicon Nanowires

ChemNanoMat. 2018 Aug;4(8):874-881. doi: 10.1002/cnma.201800072. Epub 2018 May 29.

Abstract

Spatioselective functionalization of silicon nanowires was achieved without using a masking material. The designed process combines metal-assisted chemical etching (MACE) to fabricate silicon nanowires and hydrosilylation to form molecular monolayers. After MACE, a monolayer was formed on the exposed nanowire surfaces. A second MACE step was expected to elongate the nanowires, thus creating two different segments. When monolayers of 1-undecene or 1-tetradecyne were formed on the upper segment, however, the second MACE step did not extend the nanowires. In contrast, nanowires functionalized with 1,8-nonadiyne were elongated, but at an approximately 8 times slower etching rate. The elongation resulted in a contrast difference in high-resolution scanning electron microscopy (HR-SEM) images, which indicated the formation of nanowires that were covered with a monolayer only at the top parts. Click chemistry was successfully used for secondary functionalization of the monolayer with azide-functionalized nanoparticles. The spatioselective presence of 1,8-nonadiyne gave a threefold higher particle density on the upper segment functionalized with 1,8-nonadiyne than on the lower segment without monolayer. These results indicate the successful spatioselective functionalization of silicon nanowires fabricated by MACE.

Keywords: Si nanowires; hydrosilylation; metal-assisted chemical etching; monolayers; site-selective functionalization.