Isolation and Characterization of Multidrug Resistance Aeromonas salmonicida subsp. salmonicida and Its Infecting Novel Phage ASP-1 from Goldfish (Carassius auratus)

Indian J Microbiol. 2019 Jun;59(2):161-170. doi: 10.1007/s12088-019-00782-5. Epub 2019 Feb 4.

Abstract

In this study, Aeromonas salmonicida subsp. salmonicida was isolated, identified by 16S RNA sequencing and its potential lytic phage (ASP-1) was isolated and characterized. The bacterium was positive for virulence genes (ascV, fla, ahyB, gcaT, lip, alt and act) and phenotypic parameters (haemolysis, slime production, lipase activity, DNase test, gelatinase activity and protease activity) were tested. The bacterium was resistant to 27%, intermediate resistant to 14% and susceptible to 59% of tested common antibiotics. Transmission electron microscopy analysis revealed that lytic ASP-1 belongs to the Myoviridae family. The isolated phage was more specific against A. salmonicida subsp. salmonicida (efficiency of plating index = 1), but also had infectivity to A. hydrophila lab strain 1. The bacteriolytic effect of ASP-1 was tested at early exponential phase culture of A. salmonicida subsp. salmonicida, and bacteria growth was apparently decreased with time and MOI dependent manner. One-step growth of ASP-1 showed approximately 30 min of latent period, 16 PFU/infected cells of burst size and 40 min of rise period. The adsorption rate was determined as 3.61 × 108 PFU mL-1 min-1 for 3 min, and rate decreased with time. The ASP-1 genome size was estimated to be approximately 55-60 kD. The phage was stable over wide-range of temperatures, pH and salinity, thus could withstand at severe environmental conditions, indicating that ASP-1 has a potential to develop as an alternative antibiotic to use in ornamental and aquaculture industry.

Keywords: Aeromonas salmonicida; Aeromonas salmonicida subsp. salmonicida; Biocontrol; Lytic phage; Pathogenicity; Phage infectivity.