Fe x Sn y O z Composites as Anode Materials for Lithium-Ion Storage

J Nanosci Nanotechnol. 2019 Oct 1;19(10):6636-6640. doi: 10.1166/jnn.2019.17088.

Abstract

A novel composite, FexSnyOz, consisting of tin oxide and iron oxide was developed via a galvanic replacement reaction. The morphology, crystalline structure, and composition of the FexSnyOz composite were investigated by employing X-ray diffraction, energy dispersive X-ray spectroscopy, and transmission electron microscopy. When evaluated as an anode material using different binders, namely, polyvinylidene fluoride (PVDF) and poly(acrylic acid) (PAA), the composite blended with the PAA binder displayed a high coulombic efficiency and excellent cycling stability compared to the composite mixed with the PVDF binder. The excellent electrochemical performance could be attributed to the different interactions between the current collector and the binders, as well as the volume accommodation during cycling. Therefore, the results indicated that the application of an appropriate binder could lead to a significant improvement in the electrochemical performance of FexSnyOz composite anodes for lithium-ion batteries.