Synthesis, Spectroscopy, and Theoretical Details of Uranyl Schiff-Base Coordination Complexes

Inorg Chem. 2020 Jan 6;59(1):23-31. doi: 10.1021/acs.inorgchem.9b00477. Epub 2019 Apr 22.

Abstract

Two uranyl Schiff-base coordination complexes, UO2L(MeOH) and UO2Cl2(H2L) {L = N,N'-bis[(4,4'-diethylamino)salicylidene]-1,2-phenylenediamine}, have been synthesized that feature a rigid phenyl backbone. These complexes have been characterized by structural, spectroscopic, and theoretical analysis to offer an electronic structure basis to explain the bonding parameters and stability. Single-crystal X-ray analysis reveals that UO2L(MeOH) adopts the typical "soft taco confirmation" characteristic of uranyl salophen complexes, whereas UO2Cl2(H2L) features an unusual neutral ligand coordination that contains an internal hydrogen bond between the phenol and imine. Rate constants calculated from electrochemical experiments confirm a quasi-reversible UO22+/UO2+ couple. Single-configurational and multiconfigurational methods were used to explore the bonding in UO2L(MeOH) and UO2Cl2(H2L). For UO2Cl2(H2L), the U-Cl bond exhibits more covalent contributions than U-OL.