Flavonol Biosynthesis Genes and Their Use in Engineering the Plant Antidiabetic Metabolite Montbretin A

Plant Physiol. 2019 Jul;180(3):1277-1290. doi: 10.1104/pp.19.00254. Epub 2019 Apr 19.

Abstract

The plant metabolite montbretin A (MbA) and its precursor mini-MbA are potential new drugs for treating type 2 diabetes. These complex acylated flavonol glycosides only occur in small amounts in the corms of the ornamental plant montbretia (Crocosmia × crocosmiiflora). Our goal is to metabolically engineer Nicotiana benthamiana using montbretia genes to achieve increased production of mini-MbA and MbA. Two montbretia UDP-dependent glycosyltransferases (UGTs), CcUGT1 and CcUGT2, catalyze the formation of the first two pathway-specific intermediates in MbA biosynthesis, myricetin 3-O-rhamnoside and myricetin 3-O-glucosyl rhamnoside. In previous work, expression of these UGTs in N. benthamiana resulted in small amounts of kaempferol glycosides but not myricetin glycosides, suggesting that myricetin was limiting. Here, we investigated montbretia genes and enzymes of flavonol biosynthesis to enhance myricetin formation in N. benthamiana We characterized two flavanone hydroxylases, a flavonol synthase, a flavonoid 3'-hydroxylase (F3'H), and a flavonoid 3'5'-hydroxylase (F3'5'H). Montbretia flavonol synthase converted dihydromyricetin into myricetin. Unexpectedly, montbretia F3'5'H shared higher sequence relatedness with F3'Hs in the CYP75B subfamily of cytochromes P450 than with those with known F3'5'H activity. Transient expression of combinations of montbretia flavonol biosynthesis genes and a montbretia MYB transcription factor in N. benthamiana resulted in availability of myricetin for MbA biosynthesis. Transient coexpression of montbretia flavonol biosynthesis genes combined with CcUGT1 and CcUGT2 in N. benthamiana resulted in 2 mg g-1 fresh weight of the MbA pathway-specific compound myricetin 3-O-glucosyl rhamnoside. Additional expression of the montbretia acyltransferase CcAT1 led to detectable levels of mini-MbA in N. benthamiana.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biosynthetic Pathways / genetics*
  • Flavones / biosynthesis*
  • Flavones / chemistry
  • Flavonols / biosynthesis*
  • Flavonols / chemistry
  • Gene Expression Regulation, Plant
  • Glycosides / chemistry
  • Glycosides / metabolism
  • Glycosyltransferases / genetics
  • Glycosyltransferases / metabolism
  • Hypoglycemic Agents / chemistry
  • Hypoglycemic Agents / metabolism*
  • Isoenzymes / genetics
  • Isoenzymes / metabolism
  • Kaempferols / chemistry
  • Kaempferols / metabolism
  • Mannosides / chemistry
  • Mannosides / metabolism
  • Metabolic Engineering / methods*
  • Models, Chemical
  • Molecular Structure
  • Nicotiana / genetics
  • Nicotiana / metabolism*
  • Oxidoreductases / genetics
  • Oxidoreductases / metabolism
  • Plant Proteins / genetics
  • Plant Proteins / metabolism
  • Trisaccharides / biosynthesis*
  • Trisaccharides / chemistry

Substances

  • Flavones
  • Flavonols
  • Glycosides
  • Hypoglycemic Agents
  • Isoenzymes
  • Kaempferols
  • Mannosides
  • Plant Proteins
  • Trisaccharides
  • montbretin A
  • myricetin-3-O-rhamnoside
  • Oxidoreductases
  • flavonol synthase
  • Glycosyltransferases