Computational model of the mechanoelectrophysiological coupling in axons with application to neuromodulation

Phys Rev E. 2019 Mar;99(3-1):032406. doi: 10.1103/PhysRevE.99.032406.

Abstract

For more than half a century, the action potential (AP) has been considered a purely electrical phenomenon. However, experimental observations of membrane deformations occurring during APs have revealed that this process also involves mechanical features. This discovery has recently fuelled a controversy on the real nature of APs: whether they are mechanical or electrical. In order to examine some of the modern hypotheses regarding APs, we propose here a coupled mechanoelectrophysiological membrane finite-element model for neuronal axons. The axon is modeled as an axisymmetric thin-wall cylindrical tube. The electrophysiology of the membrane is modeled using the classic Hodgkin-Huxley (H-H) equations for the Nodes of Ranvier or unmyelinated axons and the cable theory for the internodal regions, whereas the axonal mechanics is modeled by means of viscoelasticity theory. Membrane potential changes induce a strain gradient field via reverse flexoelectricity, whereas mechanical pulses result in an electrical self-polarization field following the direct flexoelectric effect, in turn influencing the membrane potential. Moreover, membrane deformation also alters the values of membrane capacitance and resistance in the H-H equation. These three effects serve as the fundamental coupling mechanisms between the APs and mechanical pulses in the model. A series of numerical studies was systematically conducted to investigate the consequences of interaction between the APs and mechanical waves on both myelinated and unmyelinated axons. Simulation results illustrate that the AP is always accompanied by an in-phase propagating membrane displacement of ≈1nm, whereas mechanical pulses with enough magnitude can also trigger APs. The model demonstrates that mechanical vibrations, such as the ones arising from ultrasound stimulations, can either annihilate or enhance axonal electrophysiology depending on their respective directionality and frequency. It also shows that frequency of pulse repetition can also enhance signal propagation independently of the amplitude of the signal. This result not only reconciles the mechanical and electrical natures of the APs but also provides an explanation for the experimentally observed mechanoelectrophysiological phenomena in axons, especially in the context of ultrasound neuromodulation.

MeSH terms

  • Action Potentials / physiology*
  • Animals
  • Axons / physiology*
  • Biomechanical Phenomena
  • Computer Simulation*
  • Elasticity
  • Electric Capacitance
  • Finite Element Analysis
  • Models, Neurological*
  • Myelin Sheath / physiology
  • Synaptic Transmission / physiology*
  • Viscosity