Sensitivity of Safe Trajectory in a Game Environment to Determine Inaccuracy of Radar Data in Autonomous Navigation

Sensors (Basel). 2019 Apr 16;19(8):1816. doi: 10.3390/s19081816.

Abstract

This article provides an analysis of the autonomous navigation of marine objects, such as ships, offshore vessels and unmanned vehicles, and an analysis of the accuracy of safe control in game conditions for the cooperation of objects during maneuvering decisions. A method for determining safe object strategies based on a cooperative multi-person positional modeling game is presented. The method was used to formulate a measure of the sensitivity of safe control in the form of a relative change in the payment of the final game; to determine the final deviation of the safe trajectory from the set trajectory of the autonomous vehicle movement; and to calculate the accuracy of information in terms of evaluating the state of the control process. The sensitivity of safe control was considered in terms of both the degree of the inaccuracy of radar information and changes in the kinematics and dynamics of the object itself. As a result of the simulation studies of the positional game algorithm, which used an example of a real situation at sea of passing one's own object with nine other encountered objects, the sensitivity characteristics of safe trajectories under conditions of both good and restricted visibility at sea are presented.

Keywords: automatic radar plotting aid; autonomous navigation; computer simulation; game theory; safe objects control.