Viable and necrotic tumor assessment from whole slide images of osteosarcoma using machine-learning and deep-learning models

PLoS One. 2019 Apr 17;14(4):e0210706. doi: 10.1371/journal.pone.0210706. eCollection 2019.

Abstract

Pathological estimation of tumor necrosis after chemotherapy is essential for patients with osteosarcoma. This study reports the first fully automated tool to assess viable and necrotic tumor in osteosarcoma, employing advances in histopathology digitization and automated learning. We selected 40 digitized whole slide images representing the heterogeneity of osteosarcoma and chemotherapy response. With the goal of labeling the diverse regions of the digitized tissue into viable tumor, necrotic tumor, and non-tumor, we trained 13 machine-learning models and selected the top performing one (a Support Vector Machine) based on reported accuracy. We also developed a deep-learning architecture and trained it on the same data set. We computed the receiver-operator characteristic for discrimination of non-tumor from tumor followed by conditional discrimination of necrotic from viable tumor and found our models performing exceptionally well. We then used the trained models to identify regions of interest on image-tiles generated from test whole slide images. The classification output is visualized as a tumor-prediction map, displaying the extent of viable and necrotic tumor in the slide image. Thus, we lay the foundation for a complete tumor assessment pipeline from original histology images to tumor-prediction map generation. The proposed pipeline can also be adopted for other types of tumor.

Publication types

  • Evaluation Study
  • Research Support, Non-U.S. Gov't
  • Validation Study

MeSH terms

  • Bone Neoplasms / diagnosis*
  • Bone Neoplasms / pathology
  • Bone and Bones / pathology
  • Datasets as Topic
  • Deep Learning*
  • Humans
  • Image Interpretation, Computer-Assisted / methods*
  • Necrosis / pathology
  • Osteosarcoma / diagnosis*
  • Osteosarcoma / pathology
  • ROC Curve
  • Reproducibility of Results
  • Software
  • Support Vector Machine*

Grants and funding

This work was supported by Cancer Prevention and Research Institute of Texas (CPRIT) award RP150164 (URL: https://www.cprit.state.tx.us/grants-funded/grants/rp150164). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.