Mechanical Performance of Posterior Spinal Instrumentation and Growing Rod Implants: Experimental and Computational Study

Spine (Phila Pa 1976). 2019 Sep;44(18):1270-1278. doi: 10.1097/BRS.0000000000003061.

Abstract

Study design: Experimental and computational study of posterior spinal instrumentation and growing rod constructs per ASTM F1717-15 vertebrectomy methodology for static compressive bending.

Objective: Assess mechanical performance of standard fusion instrumentation and growing rod constructs.

Summary of background data: Growing rod instrumentation utilizes fewer anchors and spans longer distances, increasing shared implant loads relative to fusion. There is a need to evaluate growing rod's mechanical performance. ASTM F1717-15 standard assesses performance of spinal instrumentation; however, effects of growing rods with side-by-side connectors have not been evaluated.

Methods: Standard and growing rod constructs were tested per ASTM F1717-15 methodology; setup was modified for growing rod constructs to allow for connector offset. Three experimental groups (standard with active length 76 mm, and growing rods with active lengths 76 and 376 mm; n = 5/group) were tested; stiffness, yield load, and load at maximum displacement were calculated. Computational models were developed and used to locate stress concentrations.

Results: For both constructs at 76 mm active length, growing rod stiffness (49 ± 0.8 N/mm) was significantly greater than standard (43 ± 0.4 N/mm); both were greater than growing rods at 376 mm (10 ± 0.3 N/mm). No significant difference in yield load was observed between growing rods (522 ± 12 N) and standard (457 ± 19 N) constructs of 76 mm. Growing rod constructs significantly decreased from 76 mm (522 ± 12 N) to 376 mm active length (200 ± 2 N). Maximum load of growing rods at 76 mm (1084 ± 11 N) was significantly greater than standard at 76 mm (1007 ± 7 N) and growing rods at 376 mm active length (392 ± 5 N). Simulations with active length of 76 mm were within 10% of experimental mechanical characteristics; stress concentrations were at the apex and cranial to connector-rod interaction for standard and growing rod models, respectively.

Conclusion: Growing rod constructs are stronger and stiffer than spinal instrumentation constructs; with an increased length accompanied a decrease in strength. Growing rod construct stress concentration locations observed during computational simulation are consistent with clinically observed failure locations.

Level of evidence: 5.

MeSH terms

  • Biomechanical Phenomena
  • Fracture Fixation, Internal / instrumentation*
  • Humans
  • Prostheses and Implants*
  • Spinal Fusion / instrumentation*
  • Stress, Mechanical