Combining Segmentation and Edge Detection for Efficient Ore Grain Detection in an Electromagnetic Mill Classification System

Sensors (Basel). 2019 Apr 15;19(8):1805. doi: 10.3390/s19081805.

Abstract

This paper presents a machine vision method for detection and classification of copper ore grains. We proposed a new method that combines both seeded regions growing segmentation and edge detection, where region growing is limited only to grain boundaries. First, a 2D Fast Fourier Transform (2DFFT) and Gray-Level Co-occurrence Matrix (GLCM) are calculated to improve the detection results and processing time by eliminating poor quality samples. Next, detection of copper ore grains is performed, based on region growing, improved by the first and second derivatives with a modified Niblack's theory and a threshold selection method. Finally, all the detected grains are characterized by a set of shape features, which are used to classify the grains into separate fractions. The efficiency of the algorithm was evaluated with real copper ore samples of known granularity. The proposed method generates information on different granularity fractions at a time with a number of grain shape features.

Keywords: edge detection; feature extraction; grain detection; seeded region growing segmentation.